Argonne'\

NATIONAL LABORATORY

Early stages of ﬁ %\ ,

Rayleigh-Taylor 7z ;
Instability flow

Tom Peterka, Rob Ross Argonne National Laboratory

Abon Choudhuri, Teng-Yok Lee, Han-Wei Shen The Ohio State University

Wes Kendall University of Tennessee, Knoxville

Attila Gyulassy, Valerio Pascucci University of Utah Tom Peterka

tpeterka@mcs.anl.gov

CScADS Summer Workshop
7/26/11 Mathematics and Computer Science Division

Premises and Challenges

Premises
All analyses are different. The user is the expert.
The user already has a serial computational module for the analysis.
Parallelizing from scratch is daunting, steep learning curve, scalability not trivial.
Scalable data movement is the key.
A common set of operations can be identified and encoded in a library.
DIY helps the user parallelize their analysis algorithm with data movement tools.
Challenges
Data model: MPI datatypes (currently)
Execution model: in situ or postprocessing
Parallelism model: MPI message passing (currently)

Load balancing: Zoltan-based repartitioning (in the works)

DIY Structure

C++ Examples

Features

C, Fortran Wrappers

Parallel input from storage

Parallel output to storage

170 Block Management Communication

. . Read
Network communication Data

Write
. Results -
Library structure Assignment
Parallel

Written in C++ Sort

Domain decomposition

Blocking Neighbor

Future wrappers for C and Fortran DIY library organization

block || block || neighbor|neighbor| | neighbor |neighbor

gid bounds || gid, pid | bounds gid, pid | bounds : ;) R
Simulation Visualization Tool

block || block || neighbor |neighbor| |neighbor |neighbor Flash, Nek5000, HACC ParaView, Vislt

gid bounds || gid, pid | bounds gid, pid | bounds | |

Analysis Library

ITL, Osuflow, Qhull, VTK
nblocks - | gid bounds || gid, pid gid, pid
DIY

Legend: |

gid = global block identification
lid = local block identification MPI
pid = process identification

DIY block list data structure DIY usage

BIL: Input I/O (code contributed by Wes Kendall)

Intrepid I/0 Bandwidth Jets Dataset

100000 OR

BILNC —x—
NC Blocking —%—

Application-level two-phase I/O

Reads raw, netCDF (current), HDF5 (future)

User posts requests

Bandwidth (MiB/s)

BIL sorts and aggregates them into large

contiguous accesses e

BIL redistributes data to processes after reading

100
64 128 256 512 1K 2K 4K 8 K

Works on single and multi block/file domains. S—
BIL performance 75% of IOR benchmark

(image courtesy Wes Kendall)

Requested Block Pattern Read Block Pattern Returned Data

PP o ® @ F®

PE |

PEs compute schedule and read data

PE |

PEs merge requests
PEs exchange data

PEs add blocks and call BIL Read

PE 3 PE 3 PE 3

BIL operations (image courtesy Wes Kendall)
Kendall et al., Towards a General I/O Layer for Parallel Visualization Applications, CG&A ‘I |

Output I/O

Headeri Analysis Headeni Analysis Headeri Analysis
Data | Data Data | Data BN Data @ Data

Block 0 Block | Block n - | Footer

Output file format

Features
Binary
General header/data blocks

Footer with indices

Application assigns semantic value, DIY deals only in MPI
datatypes (pushes data model questions up to the application)

Written efficiently in parallel, at least on BG/P so far

Single file for now, time-varying output not done yet

Blocking and Assignment

Process Assignment Blocking

Block

Voxel

Example of multiblock Hybrid 3D/4D time-space decomposition.
assignment: 512 voxels Time-space is represented by 4D blocks that
decomposed into 64 blocks can also be decomposed such that time

and assigned to 3 processes. blocking is handled separately.

Communication Patterns: Nearest Neighbor

Xawaw ar e <a < ><

Xawaw ey e ey < ><

Continue to further analysis or
parallel write results to storage

Peterka et al., A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields, IPDPS ‘| |

Communication Patterns: Swap-Based Global Reduction

Continue to further analysis or
parallel write results to storage

Peterka et al., A Configurable Algorithm for Parallel Image-Compositing Applications, SC 09

Communication Patterns: Merge-Based Global Reduction

Round | “ n
k =2

Results

Continue to further analysis or
parallel write results to storage

Peterka et al., Scalable Parallel Building Blocks for Custom Data Analysis, to appear in LDAV ‘| |

Example APl Use

// setup and domain decomposition

int dim = 3; // number of dimensions in the problem

int tot_blocks = 8; // total number of blocks

inté4 _t data_size[3] = {10, 10, 10}; // data size

inté4_t given[3] = {0, 0, 0}; // constraints on blocking (none)

Assignment *assignment = new Assignment(tot_blocks, nblocks, maxblocks,
MPI_COMM_WORLD);

Blocking *blocking = new Blocking(dim, tot_blocks, data_size, 0, 0, 0, given, assighment,
MPI_COMM_WORLD);

/Il read data
for (inti = 0; i < nblocks; i++) {
blocking->BlockStartsSizes(i, min, size);
int bil_data_size[3] = { data_size[2], data_size[l], data_size[0] };
int bil_min[3] = { min[2], min[1], min[0] };
int bil_size[3] = { size[2], size[l], size[0] };
BIL_Add_block raw(dim, bil_data_size, bil_min, bil_size, infile, MPI_INT, (void**)&(data[i]));

}
BIL_Read();

Example APl Continued

I local analysis

/I merge results

int rounds = 2; // two rounds of merging

int kvalues[2] = {4, 2}; // k-way merging, eg 4-way followed by 2-way merge
int nb_merged; // number of output merged blocks

Merge *merge = new Merge(MPI_COMM_WORLD);

nb_merged = merge->MergeBlocks((char**)merged_results, (int **)NULL, nblocks, (char*&)
results, rounds, &kvalues[0], io, assighment, &ComputeMerge, &Createltem,&Deleteltem,
&CreateType);

Il write results

O *io = new IO(dim, tot_blocks, maxblocks, MPI_COMM_WORLD);
io->WriteAnalnit(outfile);

io->WriteAllAna((void **)merged_results, nb_merged, maxblocks, dtype);

io->WriteAnaFinalize();

Applications and Results

Strong Scaling Strong Scaling Performance

—8— Original
—&— Optimized
Perfect scaling

-~ Total time
- Perfect scaling

250 300

200

Particle tracing
Morse-Smale complex

Information entropy

End-to—End Total Time (s)

Feature detection

T - T T T T T T
8192 16384 32768 4096 ataz 16384 32768

Number of Processes Number of Processes

sy 7
S o AV 7
/ S I L
vV AINe e
™ N Y\ N
SRR T

*

— ~

-1
-~
b

Information entropy
(image courtesy Teng-Yok Lee) Topological analysis

Summary

Successes

Supports numerous, diverse analysis techniques.
Flexible combination of data movements.

Both postprocessing and in situ.

Scales well. To Do

Finish installing existing code
AMR and unstructured decomposition
Limitations Particle decomposition
Low level data type Hybrid parallelism?
Intrusive in situ
Takes space, can crash, requires recompilation

Requires effort on the part of the user

Needs a program and programmer.

s ENERGY

Argonne'\

NATIONAL LABORATORY

Data Movement Support for Analysis

https://svn.mcs.anl.gov/repos/diy/trunk

Peterka et al., Scalable Parallel Building Blocks for Custom Data Analysis, to appear in LDAV ‘I |

Tom Peterka

tpeterka@mcs.anl.gov
CScADS Summer Workshop
7/26/1 | Mathematics and Computer Science Division

